For more details, please see ourCookie Policy.

Data Center

Five Critical Storage Requirements and Why Fabrics Matter

by on ‎12-02-2012 08:00 PM - last edited on ‎10-28-2013 05:29 PM by bcm1 (2,947 Views)

Storage is indispensable. Without it datacenters don’t exist, business doesn't make money and iPads have nothing to display.


But storage by itself isn't enough. The data it holds has to be processed by applications and sent to users, customers and partners, and that means it has to flow quickly, reliably and without interruption. Storage requires a network and a storage protocol to send and receive the data residing in storage pools.




But, not just any old network will do. Today, there are a number of storage protocols to choose from: Fibre Channel, iSCSI, NFS, CIFS, and the new comer, FCoE. Regardless of which ones you use (yes, that's plural because many datacenters use more than one storage protocol), the storage network has to meet the same five critical requirements.


The Five Critical Storage Requirements

  1. Resiliency
  2. High-Availability
  3. Low latency
  4. Equal Cost Multi-path routing (ECMP)
  5. Consistent policy enforcement




Every storage network has to provide these or data gets corrupted, applications crash and customers go to a competitor instead of waiting for on-line order screens to refresh. With a client/server application, best effort is acceptable, but with storage traffic, guaranteed delivery is essential. Ensuring performance and guaranteed delivery in a network isn’t easy, but it is essential for storage traffic.




A fabric network provides all five of these critical requirements for any storage protocol. Fabrics are not hierarchical trees so all nodes are equidistant from each other in terms of bandwidth and latency. A unique property of a fabric is the ability to cross-connect all nodes using a flat topology. Every node can talk to any other node without loss of bandwidth or variations in latency. Fabrics are the perfect way to transport storage traffic as storage protocols are very sensitive to congestion delays and variable latency.




Another important property of a fabric is resiliency to disruption and path failure. Just as a tear in a piece of cloth stays localized and doesn't destroy the entire cloth, loss of a single link, switch port, or switch does not affect traffic flowing through the rest of a fabric. But unlike your jeans, fabrics are self-healing. They detect path failures and automatically reroute traffic around the failure to the shortest remaining paths without applications or users being aware of it. This self-healing property is very important for storage traffic because server applications and databases expect reliable transport of storage data even when a path fails. And with the growth of server virtualization, more applications are running on a single server so self-healing fabrics are more important than ever.




Finally, data security and integrity rely on policies to define access control so applications access only their own storage extents within a storage pool. Ensuring policies are consistent on every port in every switch in a fabric can be time consuming and error prone, particularly as the size of the network increases. With server virtualization and live virtual machine migration, manual policy management becomes a nightmare for the network administrator. Fabrics solve this problem by abstracting policies from the physical ports and switches in a fabric. Policies are applied one time to the fabric rather than the physical switch ports. The fabric control plane automatically enforces the policy for all switches and ports in the fabric so data never gets corrupted, goes missing or is compromised.


Brocade pioneered Fibre Channel switches and is the recognized leader in the industry with 16 Gbps technology and the DCX family of SAN backbone switches. Anticipating the need for fabrics that support IP storage protocols like iSCSI and NAS, Brocade introduced VCS Fabric Technology in 2010 creating a new data center technology category, Ethernet Fabrics, recognized as a solution to not only the growth in IP storage management but virtual machine management as well.


You can read about Brocade VCS Fabrics and how they work herehere and here and about how they can be used with IP storage here and here. Go ahead and drop by The Network Matters where you will find an ESG white paper about “The Importance of Fabric-based Architectures for Storage”.




With Brocade fabric technologies, both Fibre Channel and VCS Fabric, you can confidently use any storage protocol you wish with the assurance that all five critical storage requirements—resiliency, high availability, low latency ECMP routing, and security—are being handled.  Brocade fabrics make sure storage administrators stay off the administrative treadmill as storage continues to grow.